Probability Inequalities & Identities
- Statistics 3.4

Chebyshev’s Inequality

Let $X$ be a random variable and let $g(x)$ be a non-negative function. Then, for any $r>0$,

\[ P(g(X) \geq r) \leq \frac{\mathrm{E}[g(X)]}{r} \]

Proof

\[ \begin{align*} \mathrm{E}[g(X)] &= \int_{-\infty}^\infty g(x) f_X(x) \dd{x} \nl &\ge \int_{x:g(x) \geq r} g(x) f_X(x) \dd{x} \nl &\geq r \int_{x:g(x) \geq r} f_X(x) \dd{x} \nl &= r P(g(X) \geq r) \end{align*} \]

Special Case

Let $g(x) = (x - \mu)^2/\sigma^2$, where $\mu = \mathrm{E}[X]$ and $\sigma^2 = \mathrm{Var}[X]$. For convenience write $r=t^2$. Then

\[ P(|X - \mu| \geq t\sigma) \leq \frac{1}{t^2} \]

or equivalently,

\[ P(|X - \mu| < t\sigma) \geq 1 - \frac{1}{t^2} \]

Tighter Inequality

If $Z$ is standard normal, then for all $t> 0$,

\[ P(|Z| \geq t) \leq \sqrt{\frac{2}{\pi}} \frac{e^{-t^2/2}}{t} \]

Proof

\[ \begin{align*} P(Z\geq t) &= \int_t^\infty \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \dd{x} \nl &\leq \frac{1}{\sqrt{2\pi}} \int_t^\infty \frac{x}{t} e^{-x^2/2} \dd{x} \nl &= \frac{1}{\sqrt{2\pi}} \frac{e^{-t^2/2}}{t} \end{align*} \]

There is a more general inequality known as the Gauss inequality which describes the property of unimodal distributions. Let $X\sim f$, where $f$ is unimodal with mode $\nu$, and define $\tau^2 = \mathrm{E}\left[(X-\nu)^2 \right]$. Then

\[ P(|X - v| > \varepsilon) \leq \begin{cases} \dfrac{4\tau^2}{9\varepsilon^2} & ; \varepsilon \ge \dfrac{4}{3} \tau \nl \nl 1-\dfrac{\varepsilon}{\sqrt{3}\tau} & ; \varepsilon \le \dfrac{4}{3} \tau \end{cases} \]

Although this is a tighter bound than Chebyshev’s inequality, the dependence on the mode $v$ makes it less useful in practice. The extension to Vysochanskij–Petunin inequality removes this limitation. Let $X\sim f$ be a unimodal distribution, and define $\xi^2 = \mathrm{E}\left[(X - \alpha)^2 \right]$ for an arbitrary $\alpha$. Then

\[ P(|X - \alpha| > \varepsilon) \leq \begin{cases} \dfrac{4\xi^2}{9\varepsilon^2} & ; \varepsilon \ge \dfrac{8}{3} \xi \nl \nl \dfrac{4\xi^2}{9\varepsilon^2} - \dfrac{1}{3} & ; \varepsilon \le \dfrac{8}{3} \xi \end{cases} \]

Taking $\alpha = \mathrm{E}[X]$ and $\varepsilon = 3\sigma$ gives us a three sigma rule:

\[ P(|X - \mu| > 3\sigma) \leq \frac{4}{81} < 5\% \]

Identities

Gamma Recursion

Let $X_{\alpha,\beta}\sim \mathrm{Gamma}(\alpha, \beta)$ with pdf $f(x|\alpha, \beta)$, where $\alpha > 1$. Then for any constants $a,b$,

\[ P(a<X_{\alpha,\beta}<b) = \beta( f(a|\alpha, \beta) - f(b|\alpha, \beta) ) + P(a<X_{\alpha-1,\beta}<b) \]

Stein’s Lemma

Let $X\sim\mathcal{N}(\mu, \sigma^2)$ and $f$ be a differentiable function such that $\mathrm{E}|f'(X)| < \infty$. Then,

\[ \mathrm{E}[f(X)(X - \mu)] = \sigma^2 \mathrm{E}[f'(X)] \]

Chi-Squared Recursion

For any function $f$,

\[ \mathrm{E}\left[ f\left(\chi^2_p\right) \right] = p \mathrm{E}\left[ \frac{f(\chi^2_{p+2})}{\chi^2_{p+2}} \right] \]

Hwang’s Recursion

Let $f(x)$ be a function of which mean and $f(-1)$ exists.

  • If $X\sim\mathrm{Poisson}(\lambda)$, \[ \mathrm{E}[ \lambda f(X) ] = \mathrm{E} [ Xf(X-1) ] \]
  • If $X\sim\mathrm{NB}(r,p)$, \[ \mathrm{E}[(1-p)f(X)] = \mathrm{E}\left[ \frac{X}{r+X-1}f(X-1) \right] \]