Exponential Families
- Statistics 3.2
Exponential Families
An exponential family is a class of probability distributions that can be expressed in a specific form. The general form of an exponential family distribution is:
\[ f(x \mid \bs{\theta}) = h(x) \exp\left( \bs{\eta}(\bs{\theta})\cdot\mathbf{T}(x) - A(\bs{\theta}) \right) \]
Here, $\bs{\theta}$ is the parameter vector and $\bs{\eta}(\bs{\theta})$ is the natural parameter vector. For a distribution to be in the exponential family, its support must be independent of the parameters, and the function $h(x)$ must not depend on the parameters.
Properties
\[ \begin{align*} \mathrm{E}\left[ \pdv{\bs{\eta(\bs{\theta})}}{\theta_i}\cdot\mathbf{T}(X) \right] &= \pdv{A(\bs{\theta})}{\theta_i} \nl \mathrm{Var}\left[ \pdv{\bs{\eta}(\bs{\theta})}{\theta_i}\cdot\mathbf{T}(X) \right] &= \pdvn{2}{A(\bs{\theta})}{\theta_i} - \mathrm{E}\left[ \pdvn{2}{\bs{\eta}(\bs{\theta})}{\theta_i}\cdot\mathbf{T}(X) \right] \end{align*} \]
Proof
\[ \begin{align*} \mathrm{E}\left[ \pdv{\bs{\eta}(\bs{\theta})}{\theta_i}\cdot\mathbf{T}(X) \right] &= \int_X \pdv{\bs{\eta}(\bs{\theta})}{\theta_i}\cdot\mathbf{T}(x) h(x) \exp(\bs{\eta}(\bs{\theta})\cdot \mathbf{T}(x)-A(\bs{\theta})) \dd{x} \nl &= \int_X h(x) e^{-A(\bs{\theta})}\pdv{}{\theta_i}\exp(\bs{\eta}(\bs{\theta})\cdot \mathbf{T}(x)) \dd{x} \nl &= e^{-A(\bs{\theta})}\pdv{}{\theta_i} \int_X h(x) \exp(\bs{\eta}(\bs{\theta})\cdot \mathbf{T}(x)) \dd{x} \nl &= e^{-A(\bs{\theta})}\pdv{}{\theta_i} e^{A(\bs{\theta})} \nl &= \pdv{A(\bs{\theta})}{\theta_i} \end{align*} \] where $X$ is the support of the distribution. The second equation can be derived similarly.
Natural Parameter Space
The natural parameter space is the set of all possible values of the natural parameter vector $\bs{\eta}(\bs{\theta})$.
\[ \mathscr{H} = \Set{ \bs{\eta} | \int_{-\infty}^\infty h(x) \exp(\bs{\eta} \cdot \mathbf{T}(x)) \dd{x} < \infty } \]
For the values of $\bs{\eta}\in \mathscr{H}$, we must have:
\[ A(\bs{\eta}) = \ln\left( \int_{-\infty}^\infty h(x) \exp(\bs{\eta} \cdot \mathbf{T}(x)) \dd{x} \right) \]
Natural parameter space has many useful properties, such as being convex.
Curved Exponential Families
A curved exponential family is a subset of the exponential family where $\dim(\bs{\theta}) < \dim(\bs{\eta})$. A full exponential family is one where $\dim(\bs{\theta}) = \dim(\bs{\eta})$.